当前位置:
首页 > 计算机 > 程序设计 > 智能风控:Python金融风险管理与评分卡建模pdf/doc/txt格式电子书下载

智能风控:Python金融风险管理与评分卡建模pdf/doc/txt格式电子书下载

本站仅展示书籍部分内容

如有任何咨询

请加微信10090337咨询

智能风控:Python金融风险管理与评分卡建模pdf/doc/txt格式电子书下载

书名:智能风控:Python金融风险管理与评分卡建模pdf/doc/txt格式电子书下载

推荐语:资深风控专家用漫画风格从3维度详解信用风险量化分析与建模,大量算法和案例,学术界和企业界共同推荐

作者:梅子行,毛鑫宇

出版社:机械工业出版社

出版时间:2020-04-01

书籍编号:30616186

ISBN:9787111653752

正文语种:中文

字数:80965

版次:1

所属分类:计算机-程序设计

全书内容:

智能风控:Python金融风险管理与评分卡建模pdf/doc/txt格式电子书下载

推荐序


风控作为金融的核心,从传统金融到互联网金融一直没有改变,改变的是金融科技的进步以及传统风控到智能风控变革。


本书采用热门、主流的Python汇编语言,从0到1系统地、全面地介绍了风控模型的设计、开发、评估和校验、部署、监控、迭代。将理论和实例相结合,详细地解读了风控模型全生命周期的管理,同时引入信用风险和信用风险管理基础知识的介绍,不仅能够提升风控建模从业者对于智能风控专业知识的深入认识,而且能够帮助转行风控行业的新手从业者自助学习,有很好的可读性。


——郑江 资深金融产品经理


在智能金融风控中,数据、模型、策略是几个关键环节。梅子行的这本新书,详尽、清晰、生动地介绍了金融风险管理中的主要风险之一——信用风险管理里面的一些常用模型的全生命周期管理,包括问题分析、指标加工、模型训练、效果监控和模型迭代等。本书不仅对常见术语做了明确的定义,也结合具体的业务场景演示了如何解决问题,并辅以简洁的Python演示代码,深入浅出地勾勒出评分卡应用全貌。这本书非常适合数据分析师用于了解金融数据分析,也对所有希望了解信用风险管理模型原理的人士大有帮助。


——黄山 京东数字科技风险管理中心架构师


有幸与子行认识缘于上一本介绍智能风控的书以及我们共同的朋友斯文老师的引荐。本书的三大显著特色是系统全面、注重实践、生动活泼,全面完整地介绍了评分卡建模流程,基于最有活力的Python语言提供可实践的代码实例和丰富案例,语言生动活泼并配合插图让本书更具有可读性。


我在FICO任职多年,同时又在金融科技公司负责智能风控解决方案和风险建模技术创新研究,深切体会到,子行在继承FICO传统评分卡建模核心技术和对风险本质深刻理解基础上,又能在人工智能背景下创新智能风控技术,对于一位风控从业者而言,可谓双剑合璧。借此机会向广大风控从业者推荐本书,促进业界交流,让风控决策更有效和高效。


——张伟(笔名:上善若愚),CraiditX氪信科技技术合伙人,解决方案专家及高级风控总监,前FICO风险评分建模和风控业务策略解决方案专家


本书关注信贷风控模型,对信用评分全流程各个环节进行了详尽的介绍,辅以Python代码实现,是初学者不可多得的入门教程。


——李志勇 西南财经大学信用管理教授,《信用评分工具》《信用评分应用》等书译者


银行是经营风险的行业,即使是大银行,资产净利润率也是很低的,远不如其净利润的绝对值看起来那么“壮观”,风险的波动有可能将其当年甚至以前年度的净利润快速消耗殆尽。在如今这个网络和计算高度发达的时代,业务信息量大、办理速度快,风控已经不再是人力可为的,必须依靠技术手段进行管理。梅子行老师推出的这本书,是一本理论与实际相结合,生动介绍业务规则、技术实现的工具书,结合简单易学的Python语言,带领读者轻松走进“智能风控”的大门。


——付晓岩 建信金融科技有限责任公司风险合规法律部风险合规团队副总经理


本书从信用管理的基本概念入手,全面且系统地介绍了如何利用Python进行数据化信用风控管理。全书文字简单易于理解、框架逻辑性强、插图生动有趣。如果你对数据分析、建模和算法有兴趣,这是一本很好的入门教材;如果你是传统风控人员,这也会是一本很好的转型宝典。


——翟锟 华亿嘉科技风控总监


“消费”作为国民经济发展的三驾马车之一在经济发展过程中扮演着重要角色,我国的消费信贷业务目前已进入快速增长阶段,而消费信贷业务中最关键的就是风险控制。本书结合Python语言,从传统信用评分的基础开始,配上生动有趣的插图,深入浅出地介绍了评分卡建模的完整体系。对于风险控制的从业者来讲,是一本非常值得阅读的书。


——李建宏 阿里云智能高级解决方案架构师


本书从基础概念到建模全流程、模型校准决策、模型迭代,写得十分详细,实用性非常强,有很好的学习参考价值。


——周立烽 历任阿里系禧云、腾讯系微盟风控总监


本书既为风控领域的初学者们提供了一个信贷业务的全局视图,也生动幽默地介绍了该领域必备的建模技术以及可供初学者快速上手的代码示例,是帮助初入职场的学生们衔接理论技术与业务实践的一本实操手册。值得推荐。


——周凡吟 西南财经大学统计学院副教授,大数据金融风险管理专家

前言


为何写作本书


互联网金融与金融科技是数据从业者较为关注的方向之一。风险控制是金融的核心。信贷场景下的风险,很大程度上取决于贷款人的信用风险。因此,如何对贷款用户的信用风险进行合理度量,是信贷平台关注的首要问题。


信贷风控的建模方法由来已久,笔者在另一本著作《智能风控:原理、算法与工程实践》中重点介绍了互联网金融场景下机器学习在金融科技中的应用方法与技术实现。市面上大多数信用评分建模的指导书籍都是基于SAS开发或不涉及工程实现的。因此,为推广传统信用评分方法,我们决定撰写本书。


本书完整地介绍了如何基于Python语言从0到1建立信用评分模型,并系统介绍了建立模型之后,如何通过拒绝推断及校准来修正模型与真实场景的偏差。此外,本书还介绍了如何上线部署,以及后续的监控与迭代中的注意事项。希望读者阅读本书后,可以学习到规范、完整的评分卡建模体系,可以使用Python独立地建立标准评分卡模型,并通过模型与策略相组合的方法实现对贷款用户的信用管理。


本书主要内容


第1章主要介绍了信用管理的基础知识。风控场景对业务知识的储备有较高要求,而市面上也缺少相关名词的规范化材料,因此本章对相关术语进行了解释,并给出了统一的定义。此外,本章还详细地介绍了现阶段企业的风险控制架构。了解整个风控框架,有助于读者理解场景中的具体问题的成因,从而精准定义问题,理解每一项技术的原理。


第2章主要介绍评分卡的相关概念,规范了评分卡模型的建模流程。从适用客群和用途两个角度揭示了从业者定义评分卡的思路,并且对整个建模流程中最重要的步骤——模型设计,进行了详细的梳理。此外,本章还对常用于评分卡建模的数据进行了解读。


第3章主要讲解了评分卡建模中常用的机器学习算法。从机器学习基础出发,由简单的线性回归,逐步进阶到具有良好解释性的逻辑回归模型。除直接用于评分卡建模的逻辑回归模型外,本章还介绍了几种常用的辅助建模模型。最后,还介绍了一些模型之间相互取长补短的合并方法,它们在实践和数据挖掘竞赛中也有较好的效果。


第4章主要介绍了几种常用的用户分群方法,同时系统地介绍了决策树模型和高斯混合聚类模型的原理,并给出了一种基于决策树模型和卡方分箱实现自动生成策略组合的分析方法。虽然用户分群并非评分卡建模的必备流程,但在大多数情况下,它可以为业务带来实际收益。


第5章主要介绍了探索性数据分析、特征衍生、特征变换的基本方法。由于评分卡中常用的广义线性模型只使用了特征的简单加权求和信息,缺乏对特征的深度挖掘能力,因此评分卡模型对人工特征工程的要求远高于其他场景。这一章介绍的特征衍生与特征变换操作是评分卡建模过程中非常重要的环节,该过程耗费的时间通常会占整个开发流程的60%~70%。


第6章主要介绍了特征筛选和模型训练方法。评分卡模型对稳定性的要求通常要高于准确性,因此需要对建模使用的特征进行精细化调优与筛选。特征变换调优过程在第5章中有相关介绍,特征筛选方法则主要集中在第6章。这一章的末尾为读者展示了一个建立评分卡模型的案例。希望读者可以通过该案例理解前6章所介绍的技术是如何应用的。


第7章主要介绍了如何对建立好的评分卡模型进行拒绝推断。信用评分模型本身是一种拥有拒绝属性的模型,幸存者偏差问题会导致每次迭代的模型逐渐偏离真实环境下的数据分布,因此需要通过数据验证、标签分裂、数据推断等方法对现有模型进行修正。


第8章主要介绍了评分卡模型建立之后的应用逻辑和校准方法。模型只是一种嵌入在策略体系中的技术手段,其本质是为策略服务的。在实际应用中,模型分数也常常作为一条单独的规则进行配置。由于一些难以避免的原因,评分卡模型通常需要进行校准,因此这一章对常用的校准方法及其使用场景进行了梳理。


第9章主要介绍了模型开发后的记录工作。由于在实际工作中常常需要多人进行交互,且经常需要回溯很久之前开发过的模型详情,因此保证每一个模型都拥有详细的记录是非常重要的。这一章给出了一个完整的评分卡模型开发文档,以便于读者参考,从而完善现有的模型记录文档。


本书内容特色


与市面上其他建模或机器学习相关的技术书籍相比,本书主要使用Python语言编写,详细介绍了传统信用管理中所涉及的基础知识、技术与工程实现。从统计学、机器学习的角度出发,系统、全面地介绍了风险数据分析中的基础概念与建模技术。本书作为“智能风控”系列的第二本书,对《智能风控:原理、算法与工程实践》一书的基础内容进行了补充。读者选择本书为入门读物,将《智能风控:原理、算法与工程实践》一书作为进阶读物,则可以由浅入深地掌握信贷领域的分析建模技术。


此外,市面上类似的介绍数据建模、算法理论的书很容易陷入平铺直叙的窘境,条理性和严谨性有余而生动性不足,特别是对于广大初学者而言,一本容易阅读的书更为有价值。因此,笔者特邀请知名插画师毛鑫宇为本书手绘漫画与插图,使本书内容表达形式生动、有趣,贴近生活,希望读者在阅读本书的过程中不会感到枯燥乏味。


本书读者对象


本书主要面向希望从事风险控制工作的分析师、建模师、算法工程师,也适合有一定统计基础的在校学生和对使用Python实现自动化信用管理感兴趣的读者。


资源和勘误


本书力求完美,但由于作者水平有限,错误和疏漏之处在所难免。在此,诚恳地期望得到各领域的专家和广大读者的批评与指正。


获取更多相关资料以及提出反馈意见,请关注公众号“大数据风控与机器学习”,后台添加作者微信,加入读者交流群,与更多从业者一起共同学习。书中相关代码可从“华章计算机”公众号获取,回复“智能风控”即可。


致谢


首先,我必须要感谢本书的另外一位作者,同时也是本书封面、插画设计者——毛鑫宇老师。毛老师是我十多年的好朋友,也是一位非常谦虚、低调、有才华的设计师。在过去的一年里,他在完美地完成本职工作的同时,陪着我一同创作了“智能风控”系列书,并在我遇到困难、多次想要放弃的时候,坚定地站在了我的身后。毫不夸张地说,这本书至少有一半功劳属于毛老师。毛老师在百般推辞后才接受在本书封面署名。


其次,我要感谢李志勇教授、黄颖(知乎ID:黄姐姐Hjj)、赵越(知乎ID:微调)、冯海杰(知乎ID:求是汪在路上)、梁辰龙(公众号/知乎 “金科应用研院”负责人)等数十位好友在日常交流和工作中对本人的指导。上述各位的书籍、专栏、公众号为包括我在内的广大风控从业者提供了极大的帮助,同时也是许多从业者入门与进阶的指南。本书对各位专家的作品也有所借鉴,在此感谢亦师亦友的各位对本书的大力支持。


感谢toad库开发者、前厚本金融数科团队的周伟鹏、周夕钰、董少乾等多位好友。他们开发的toad库稳健、快速、功能强大,几乎囊括了评分卡开发应用过程中所需的全部功能,为本书的写作带来了极大便利。相信在未来的发展与优化中,toad库会成为广大风控从业者必备的开发工具。


感谢机械工业出版社的杨福川老师和栾传龙老师。两位老师为本书花费了大量的个人时间,并在本书的创作过程中提出了宝贵的修改建议。


特别感谢林超颖、陈国栋、张斌斌等领导、同事的支持和理解。满帮集团是一家学习氛围非常浓厚的公司,我在满帮集团工作的日子非常快乐。此外,还要感谢因篇幅限制而没有提及名字的各位同事,非常感谢各位对我工作上的指导,以及思想和生活上的帮助。


最后感谢购买本书的读者,希望本书能为您带来一些收获。


梅子行


2020年3月


智能风控:Python金融风险管理与评分卡建模pdf/doc/txt格式电子书下载

第1章 信用管理基础

智能风控:Python金融风险管理与评分卡建模pdf/doc/txt格式电子书下载

1.1 信用与管理


信贷业务又称信贷资产或贷款业务,是商业银行和互联网金融公司最重要的资产业务和主要赢利手段,通过放款收回本金和利息,扣除成本后获得利润。对有贷款需求的用户,贷款平台首先要对其未来的还款表现进行预测,然后将本金借贷给还款概率大的用户。


信用管理主要包含两个概念——信用管理。信用意味着先买后付,即使用信用值来预支金钱以购买相应服务。管理即通过用户信息对用户的信用度进行评估,并根据信用情况定制风险规避策略。所谓风险控制(简称风控),即对用户风险进行管理和规避的过程。

智能风控:Python金融风险管理与评分卡建模pdf/doc/txt格式电子书下载

要知道,在信贷管理领域,有一个非常重要的概念叫作风险数据分析,它用于对用户的信用风险进

....

本站仅展示书籍部分内容

如有任何咨询

请加微信10090337咨询

本站仅展示书籍部分内容
如有任何咨询

请加微信10090337咨询

再显示