Python神经网络编程pdf/doc/txt格式电子书下载
本站仅展示书籍部分内容
如有任何咨询
请加微信10090337咨询
书名:Python神经网络编程pdf/doc/txt格式电子书下载
推荐语:人工智能深度学习机器学习领域又一重磅力作自己动手用Python编写神经网络美亚排名前茅荣获众多好评全彩印刷图表丰富
作者:(英)塔里克·拉希德(TariqRashid),林赐译
出版社:人民邮电出版社
出版时间:2018-04-01
书籍编号:30404885
ISBN:9787115474810
正文语种:中文
字数:114598
版次:
所属分类:互联网+-人工智能
版权信息
书名:Python神经网络编程
ISBN:978-7-115-47481-0
本书由人民邮电出版社发行数字版。版权所有,侵权必究。
您购买的人民邮电出版社电子书仅供您个人使用,未经授权,不得以任何方式复制和传播本书内容。
我们愿意相信读者具有这样的良知和觉悟,与我们共同保护知识产权。
如果购买者有侵权行为,我们可能对该用户实施包括但不限于关闭该帐号等维权措施,并可能追究法律责任。
著 [英] 塔里克•拉希德(Tariq Rashid)
译 林 赐
责任编辑 陈冀康
人民邮电出版社出版发行 北京市丰台区成寿寺路11号
邮编 100164 电子邮件 315@ptpress.com.cn
网址 http://www.ptpress.com.cn
读者服务热线:(010)81055410
反盗版热线:(76010)81055315
版权声明
Simplified Chinese translation copyright ©2018 by Posts and Telecommunications Press
ALL RIGHTS RESERVED.
Make Your Own Neural Network, by Tariq Rashid, ISBN 9781530826605 Copyright © 2016 by Tariq Rashid
本书中文简体版由作者授权人民邮电出版社出版。未经出版者书面许可,对本书的任何部分不得以任何方式或任何手段复制和传播。
版权所有,侵权必究。
内容提要
神经网络是一种模拟人脑的神经网络,以期能够实现类人工智能的机器学习技术。
本书揭示神经网络背后的概念,并介绍如何通过Python实现神经网络。全书分为3章和两个附录。第1章介绍了神经网络中所用到的数学思想。第2章介绍使用Python实现神经网络,识别手写数字,并测试神经网络的性能。第3章带领读者进一步了解简单的神经网络,观察已受训练的神经网络内部,尝试进一步改善神经网络的性能,并加深对相关知识的理解。附录分别介绍了所需的微积分知识和树莓派知识。
本书适合想要从事神经网络研究和探索的读者学习参考,也适合对人工智能、机器学习和深度学习等相关领域感兴趣的读者阅读。
译者序
渥太华的八月,不像中国的南方那么炎热,甚至有丝丝凉意。每到下午时分,如果没有下雨,工作了一天,有些倦怠的我一般会沿着里多运河(世界文化遗产),朝着国会山的方向慢慢跑去。从出租屋到里多运河,不到10分钟的路程。来到运河前,生命就像翻开了一页流畅缠绵的琴谱,一群白鸽在空阔悠远的蓝天下舞蹈,偶尔,还可以听到为数不多的几只夏蝉在悠久的运河边轻轻吟唱,不是那么刺目的阳光随意地拨动闪着灵光的水面,凭栏远眺,里多运河就像一位饱经风霜的老人,向周围的人们娓娓诉说着它的前世今生……
日子就这样一天一天重复着,连续数月,我完成了此书的翻译。人工智能、神经网络、机器学习……一个一个富有现代电子气息的词汇,一次又一次给我的大脑带来新的感受,也给我带来了对人生的新理解,但是,越是如此,我就越想回到历史寻找答案,希望在历史的废墟中,能找到只言片语,解开我心中的疑惑。
多年来,普通人(包括我在内)对人工智能有一个误区,即人工智能只不过是用更高级、更复杂的数学指令,告诉计算机怎么做,怎样模拟人类行为,让计算机“佯装”理解人类的感情。但是,本书的作者告诉我们,其实,授“计算机”以鱼不如授“计算机”以渔。无需太高深的数学思想,我们仅凭高中数学,就可以打造出一个专家级别的“神经网络”。这并非夸大其辞,危言耸听,而是真真切切、实实在在的事实。
现在,各大报纸、网站、各式各样的自媒体,都在宣称一种观点,就是告诫青少年好好学习,否则将来不好找工作。我以为,这种观点还太乐观了,这误导了读者,认为只要现在努力学习,就可以顺利“逆袭”。如果用有点烧脑、学究式的语言来描述这个问题,一言以蔽之,那就是“人工智能时代存在一个人类价值体现方式变革的问题”。换句话说,如果我们依旧指望课本里的那些知识求生存,不求创新,不求探索,那么对知识掌握得再好,也只是拾人牙慧,只能湮没于滚滚的历史车轮之下。如果你想知道,我为何有如此感叹,请仔细阅读本书。只要你有一点中学的数学基础,看得懂中文,而对计算又有那么一点兴趣,你就可以读懂本书。逻辑的基础其实很简单。
在这里,要特别感谢人民邮电出版社的领导和编辑,感谢他们对我的信任和理解,把这样一本好书交给我翻译。同时我也要感谢他们为本书的出版投入了巨大的热情,可谓呕心沥血。没有他们的耐心和帮助,本书不可能顺利付梓。
译者才疏学浅,见闻浅薄,译文多有不足甚至错漏之处,还望读者谅解并不吝指正。读者如有任何意见和建议,请将反馈信息发送到邮箱cilin2046@gmail.com,不胜感激。
林赐
2017年9月15日
于加拿大渥太华大学
序言
探索智能机器
千百年来,人类试图了解智能的机制,并将它复制到思维机器上。
人类从不满足于让机械或电子设备帮助做一些简单的任务,例如,使用燧石打火,使用滑轮吊起沉重的岩石,使用计算器做算术。
相反,我们希望能够自动化执行更具有挑战性、相对复杂的任务,如对相似的照片进行分组、从健康细胞中识别出病变细胞,甚至是来一盘优雅的国际象棋博弈。这些任务似乎需要人类的智能才能完成,或至少需要人类思维中的某种更深层次、更神秘的能力来完成,而在诸如计算器这样简单的机器中是找不到这种能力的。
具有类似人类智能的机器是一个如此诱人且强大的想法,我们的文化对它充满了幻想和恐惧,如斯坦利·库布里克导演的《2001: A Space Odyssey》中的HAL 9000(拥有巨大的能力却最终给人类带来了威胁)、动作片中疯狂的“终结者(Terminator)”机器人以及电视剧《Knight Rider》中具有冷静个性的话匣子KITT汽车。
1997年,国际象棋卫冕世界冠军、国际象棋特级大师加里·卡斯帕罗夫被IBM“深蓝”计算机击败,我们在庆祝这一历史性成就的同时,也担心机器智能的潜力。
我们如此渴望智能机器,以至于一些人受到了诱惑,使用欺骗手段,例如,臭名昭著的国际象棋机器Turkey仅仅是将一个人隐藏在机柜内而已!
人工智能的新黄金时代
在20世纪50年代,人工智能这门学科正式成立,此时,人类雄心勃勃,对人工智能抱着非常乐观的态度。最初的成功,让人们看到了计算机可以进行简单的博弈、证明定理,因此,一些人相信,在十年左右的时间内,人类级别的人工智能将会出现。
但是,实践证明:发展人工智能困难重重,进展一度停滞不前。20世纪70年代,人们在学术界挑战人工智能的雄心遭到了毁灭性的打击。接下来,人们削减了人工智能研究经费,对人工智能的兴趣消失殆尽。
机器那冰冷的逻辑,绝对的1和0,看起来似乎永远不能够实现细致入微的、有机的,有时甚至模糊的生物大脑思维过程。
在一段时间内,人类未能独具匠心,百尺竿头,更进一步,将机器智能探索带出其既定轨迹。在此之后,研究人员灵光一现,研究人员灵光一现,为什么不模仿天然生物大脑的工作机制来构建人工大脑?真正的大脑具有神经元,而不是逻辑门。真正人脑具有更优雅、更有机的推理,而不是冰冷的、非黑即白的、绝对的传统算法。
蜜蜂或鸽子大脑的简单性与其能够执行复杂任务的巨大反差,这一点启发了科学家。就是这零点几克的大脑,看起来就能够做许多事情,如导航、适应风向、识别食物和捕食者、快速地决定是战斗还是逃跑。当今的计算机拥有大量的廉价资源,能够模仿和改进这些大脑吗?一只蜜蜂大约有950 000个神经元,今天的计算机,具有G比特和T比特的资源,能够表现得比蜜蜂更优秀吗?
但是,如果使用传统的方法来求解问题,那么即使计算机拥有巨大的存储和超快的处理器,也无法实现鸟和蜜蜂使用相对微小的大脑所做的事情。
受到仿生智能计算的驱动,神经网络(Neural Network)出现了,并且神经网络从此成为在人工智能领域中最强大、最有用的方法之一。今天,谷歌的Deepmind以神经网络为基础,能够做一些非常奇妙的事情,如让计算机学习如何玩视频游戏,并且在人类历史上第一次在极其变化多端的围棋博弈中击败了世界级的大师。如今,神经网络已经成为了日常技术的核心,例如自动车牌号码识别、解码手写的邮政编码。
本书所探讨的就是神经网络,让你了解神经网络如何工作,帮你制作出自己的神经网络,训练神经网络来识别人类的手写字符。如果使用传统的方法来执行这个任务,那么将是非常困难的。
前言
本书的目标读者
本书是为了任何希望了解什么是神经网络的读者而编写的,是为了任何希望设计和使用自己神经网络的读者而编写的,也是为了任何希望领略那些在神经网络发挥核心作用、相对容易但激动人心的数学思想的读者而编写的。
本书的目标读者,不是数学或计算机科学方面的专家。你不需要任何专业知识或超出中学的数学能力。
如果你可以进行加、减、乘、除运算,那么你就可以制作自己的神经网络。我们使用的最困难运算是梯度演算(gradient calculus),但是,我们会对这一概念加以说明,使尽可能多的读者能够理解这个概念。
有兴趣的读者,不妨以本书为起点,进一步探索激动人心的人工智能。一旦你掌握了神经网络的基本知识,你就可以将神经网络的核心思想运用到许多不同的问题中。
教师可以使用本书,优雅从容地解释神经网络,解释神经网络的实现,激起学生对神经网络的热情,鼓励学生使用短短的几行代码制作出能够学习的人工智能。本书中的代码已经通过了测试,能够在物美价廉的计算机——树莓派上工作。树莓派是备受学校和青年学生欢迎的一款计算机。
当我年少的时候,我难以理解这些功能强大但神秘的神经网络是如何工作的。当时,我多么希望存在一本类似的书籍。我在各种书籍、电影和杂志中看到关于神经网络的只言片语,但是当时,我只能找到一些艰深难懂的教科书,而这些教科书是为那些对数学及其术语非常了解的专家级别的人而编写的。
我曾经希望有人能够以让中学生理解的方式向我解释神经网络,满足我的好奇心。而这就是我写作本书的目的。
我们将会做些什么
在这本书中,我们将扬帆起航,制作神经网络,识别手写数字。
我们将从非常简单的预测神经元开始,然后逐步改进它们,直到达到它们的极限。顺着这条路,我们将做一些短暂的停留,学习一些数学概念。我们需要这些数学概念来理解神经网络如何学习和预测问题的解。
我们将浏览一些数学思想,如函数、简单的线性分类器、迭代细化、矩阵乘法、梯度演算、通过梯度下降进行优化,甚至是几何旋转。但是,所有这些数学概念将会以一种非常优雅清晰的方式进行解释,并且除了简单的中学数学知识以外,读者完全不需要任何前提知识或专业技术。
一旦我们成功制作了第一个神经网络,我们将带着这种思想,在各个方面使用这种思想。例如,我们无需诉诸额外的训练数据,就可以使用图像处理来改善机器学习。我们将一窥神经网络的思想,看看它是否揭示了任何深刻的见解——很多书籍并没有向你展示神经网络的工作机制。
当我们循序渐进制作神经网络时,我们还将学习一种非常简单、有用和流行的编程语言Python。同样,你不需要有任何先前的编程经验。
我们将如何做到这点
本书的主要目的是向尽可能多的人揭示神经网络背后的概念。这意味着我们将一直从让人们感觉舒服和熟悉的地方开始介绍这些概念。我们将采用简单的步骤,小步前进,从一些安全的地方开始构建知识,直到我们拥有足够的知识,去理解和欣赏一些关于神经网络的、很酷炫或让人很兴奋的东西。
为了使事情尽可能顺畅方便,我们将抵制诱惑,将讨论范围严格限定为制作神经网络所必需的知识。一些读者可能会对一些有趣的题外话感兴趣,如果你是这样的读者,那么我们鼓励你对神经网络进行更广泛的研究。
本书不会探讨所有可能的神经网络优化和改进的方法。虽然在实践中,存在很多种优化和改进的方法,但是这些内容与本书的核心目的背道而驰,本书只是想用一种尽可能简单易懂、简洁明了的方式介绍神经网络的基本思路。
我们有意将本书分成3章:
- 在第1章中,我们将如清风拂面般,一览在简单的神经网络中所用的数学思想。我们有意不介绍任何计算机编程知识,以避免喧宾夺主地干扰了本书的核心思想。
在第2章中,我们将学习足以实现自己的神经网络的Python知识。我们将训练神经网络,识别手写数字,
....
本站仅展示书籍部分内容
如有任何咨询
请加微信10090337咨询